SYSTEM 28000 FEATURES

- Graphical User Interface (GUI) and Ethernet network interface for system control
- Intelligent gain and system scaling algorithms
- Test input and output monitor busses
- Go/No-Go test with diagnostics to be used before tests
- Rigorous factory acceptance test for maintenance
- Built-in temperature and power supply monitoring with alarms

28000 SIGNAL CONDITIONING SYSTEM

The Precision 28000 signal conditioning system provides all the flexibility you need to manage your test measurements.

The Precision 28000 makes it easy to manage a test with hundreds of channels and a mix of transducers. Choose charge, IEPE w/TEDS, voltage (filter amplifier), strain, thermocouple, RTD, potentiometer, current, frequency, or other transducers.

The built-in test hardware and software (optional) provide quick Go/No-Go tests which can be run before each test, and rigorous factory acceptance tests to assure you that the 28000 meets your most stringent requirements for critical applications. It won't be long before these tests earn a permanent place in your maintenance routine. And since they are traceable to NIST, they eliminate the need for off-site calibration.

In every phase of your tests—record keeping, installation, design, set-up, operation, maintenance and upgrading—the Precision 28000 offers ways to help you save time and money over the life of the system.

27604 FEATURES

- Broad selection of filter characteristics: 4-, 6- or 8-poles
- Wide range of cutoff frequency selections with filter bypass
- Distributed gain of x1 to x4096 in x2 steps; vernier resolution
- Input and output overload detection available as options
- Hi-Z, Hi-CMRR differential input
- Programmable AC/DC input coupling
- Programmable zero suppression
- Constant current source for piezo-electric transducers
- Single-ended output with optional ground reference
- Optional differential output

27604 INTRODUCTION

The Precision 27604 quad programmable filter/amplifier card allows for up to 64 channels of high-pass or low-pass filters in one 28000-M3 chassis, or 32 channels of bandpass filters. Modular construction provides easy expansion. Systems larger than 64 channels may be accommodated by multiple mainframes controlled from a system controller.

A Flexible Choice of Filter Characteristics

Seventeen standard filter characteristics are available for the Precision 27604: elliptical low-pass, elliptical high-pass, Butterworth low-pass, Bessel low-pass, and the TD Series of constant time-delay low-pass filters. These filters are each available in 4-, 6- and 8-pole configurations.

Standard models offer filter cutoff frequencies that are programmable over a 25500:1 range. In addition, you can define your own programmable cutoffs to custom tailor the Precision 27604 to your filtering application. Available cutoffs span from 0.1 Hz to as high as 127.5 kHz.

INPUT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Standard</th>
<th>DC coupled, differential input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>10 MΩ // 100 pF</td>
</tr>
<tr>
<td></td>
<td>5 MΩ // 200 pF common mode</td>
</tr>
<tr>
<td>Level</td>
<td>±10 Vpk linear for f < 127.5 kHz</td>
</tr>
<tr>
<td></td>
<td>±10 Vpk (127.5 kHz/f) for f ≥ 127.5 kHz</td>
</tr>
<tr>
<td></td>
<td>±50 Vpk without damage</td>
</tr>
<tr>
<td>CM Input Level</td>
<td>10 V</td>
</tr>
<tr>
<td>CMRR</td>
<td>80 dB, DC to 500 Hz</td>
</tr>
<tr>
<td>Bias Current</td>
<td><100 pA</td>
</tr>
<tr>
<td>Offset Drift</td>
<td>15 µV/°C, typical</td>
</tr>
<tr>
<td>Noise</td>
<td>24 nV/√Hz typical at 1 kHz, RTI</td>
</tr>
<tr>
<td>Shield</td>
<td>DIP switch selectable to be floating or grounded (chassis)</td>
</tr>
</tbody>
</table>
27604 INPUT CHARACTERISTICS (Continued)

Option 1: Single-ended input. Input low connected to analog channel ground through a 10 Ω resistor. Provides ground reference for devices with floating output circuits. Same specifications as Standard input above.

Option 2: Selectable DC blocking. Switchable input capacitor provides blocking of up to 50 VDC. Blocking mode, ON or OFF, is manually selected using a DIP switch. Status of the blocking switch is monitored and displayed by the system control. Option 2 is required for AC coupling when AC+DC input levels exceed 10 Vpk.

Impedance: 0.1 μF (50V) & 10 MΩ // 100 pF (LFRO = 0.159 Hz ±10%)

Level: 50 VDC re system analog ground

Drift: Standard drift + 25 μV/°C, typ (Blocking mode set to ON)

CMRR: 80 dB, 40 Hz to 500 Hz

Option 6: Programmable AC/DC coupled input. Option 6 can be used for AC coupling when total input level (DC plus AC signal) is less than 10 Vpk. AC/DC mode is programmed via the front panel or via remote control.

LFRO: 0.156 Hz ±3%

Level (DC+AC): ±10 Vpk

Noise: 28 nV/√Hz typ at 1 kHz, RTI

Option 8: Fixed input gain, x10

Accuracy: ±0.1% re 0 dB at 1 kHz

Stability: 50 ppm/°C

Noise: 18 nV/√Hz RTI

Max Input: 1 Vpk

Option 9: Selectable IEPE current source with AC coupling. The constant current source is applied to the channel’s HI input to power an attached remote IEPE transducer. IEPE mode is set manually using a DIP switch. When IEPE mode is set to ON, the input is AC coupled with input LO connected to ground. When IEPE mode is set to OFF, the input is DC coupled. Status is monitored and displayed by the system control.

Level: 4 mA standard; Consult factory for other options

Accuracy: ±0.6 mA

Compliance: 15 V, using internal IEPE power source

Option 9E: Same as Option 9 with auxiliary power bus to support an external supply

Test Input: Standard: A switch at the input of each channel allows for injection of a test signal. A test signal may be connected either externally at the mainframe rear panel or internally by using the 27000-?-TEST Test Subsystem Module.

Option Z: Zero Suppress.

A programmable DC offset is injected at the channel input stage. Zero suppress is useful for zeroing bridges or suppressing DC voltages at the input.

Level

- **High Range:** –10.24 V to +10.24 V, 5 mV steps
- **Low Range:** –1.28 V to +1.28 V, 625 μV steps

Accuracy

- **High Range:** 1% of setting + 13.5 μV/°C
- **Low Range:** 1% of setting + 2.0 μV/°C

DC Drift

- **High Range:** Standard drift + 13.5 μV/°C
- **Low Range:** Standard drift + 2.0 μV/°C

Figure 1 Block Diagram of Typical 27604 Filter Channel
27604 AMPLIFIER CHARACTERISTICS

Option A: Pre-filter gain stage with input overload detector
Gain: 1, 2, 4, 8, 16, 32, 64, and 128
Accuracy: ±0.1% re 0 dB at 1 kHz
Ovld Threshold: ±10 V

Option G: Post-filter gain with vernier gain multiplier
Gain: x1/16 to x32 in x 0.01 steps.
Accuracy: ±0.1% re 0 dB at 1 kHz

Option O: Post-filter overload detector
Ovld Threshold: Programmable ±1 V to ±10 V in 5 mV steps
Accuracy: ±50 mV ±1%

Other Overall Amplifier Specifications
DC Gain Stability: 50 PPM/°C
Freq Response: ±0.1 dB DC to 127.5 kHz

OUTPUT CHARACTERISTICS

Type: DC-coupled, single-ended output
Impedance: 50 Ω // 100 pF
Max Output: ±10 Vpk, ±5 mA pk
Drift: ± (Input Drift) • (A • G) ± (20 μV/°C) • G • n ± 15 μV/°C, where
A = pre-gain setting,
G = post-gain setting and
n = number of filter poles
Noise: 200 μVrms into 1 MHz BW at a gain of x1

Total Harmonic Distortion: Better than –80 dB re: fullscale
Intermodulation Distortion: Better than –80 dB re: fullscale
Crosstalk: –80 dB

Auto-Offset (Std): Standard. Offsets are automatically adjusted for each gain setting. User can initiate the offset correction routine via front panel or remote control. Offset correction data is non-volatile and remains effective if the card is relocated to a different card slot or chassis.
Offset: ±1 mV ± 500 μV x post gain setting

Output Monitor: Standard. A switch at the output of each channel allows for connection to the output monitor bus. The output monitor bus is available via a BNC connector at the mainframe rear panel. The monitor function is used by the auto-offset circuitry and by the Test Subsystem Module (27000-?-TEST).

OUTPUT CHARACTERISTICS (Continued)

Option S1: Output multiplexer (1-of-4) for use with Data Acquisition Systems.
Number of Channels: 4, one for each filter/amp output
Number of Outputs: 1 pair per filter/amp card
Control Signals: 2 address lines

Option S2: Output multiplexer (1 of 4) with simultaneous sample and hold for use with Data Acquisition Systems.
Number of Channels: 4, one for each filter/amp output
Number of Outputs: 1 pair per filter/amp card
Control Signals: 2 address lines, 1 track and hold line
Acquisition Time: 750 nS typical, 1 μS max
Aperture Jitter: 200 pS
Droop Rate: 1 μV/μS
Non-Linearity: 0.003% typ, 0.005% max

Option T: DC coupled differential output
Impedance: 50 Ω // 100 pF
Maximum Output: ±10 Vpk, ±5 mA pk
Noise: 250 μVrms into 1 MHz BW at a gain of x1

Option Y: Output Sense. Used for driving grounded single ended loads. Senses ground at the load on the output stage and refers the output to this ground. Output sense also reduces ground loop interference by providing a high impedance connection between the ground at the load and the output stage ground.
Impedance: 50 Ω // 100 pF, Hi Output
1 kΩ // 0.1 μF, Sense Input (Lo Output)
Jumper selectable to 10 Ω // 0.1 μF

Ground Error Rejection: 40 dB, DC to 120 Hz
27604 FILTER CHARACTERISTICS

8-Pole Filters

EL8: 8-pole, 8-zero Elliptic low-pass filter.
EH8: 8-pole, 8-zero Elliptic high-pass filter. Cascading an EH8 with an EL8 results in a symmetrical band-pass filter on a log frequency scale.
TD8: 8-pole, 6/8-zero constant time delay (linear phase) low-pass filter. Both the TD8A and TD8B characteristics are provided. Selecting between the TD8A and TD8B is accomplished via front panel or computer control.
TD8D: 8-pole, 8-zero constant time delay (linear phase) low-pass filter.
BU8: 8-pole Butterworth low-pass characteristic.
BE8: 8-pole Bessel low-pass characteristic.

6-Pole Filters

LP1: 6-pole, 6-zero Elliptic low-pass filter.
HP1: 6-pole, 6-zero Elliptic high-pass filter. Cascading an HP1 with an LP1 results in a symmetrical band-pass filter on a log frequency scale.
TD6: 6-pole, 4/6-zero constant time delay (linear phase) low-pass filter. Both the TD6A and TD6B characteristics are provided. Selecting between TD6A and TD6B is accomplished via front panel or computer control.
BE6: 6-pole Bessel low-pass characteristic.

4-Pole Filters

EL4: 4-pole, 4-zero Elliptic low-pass filter.
EH4: 4-pole, 4-zero Elliptic high-pass filter. Cascading an EH4 with an EL4 results in a symmetrical band-pass filter on a log frequency scale.
TD4: 4-pole, 4-zero constant time delay (linear phase) low-pass filter.
BU4: 4-pole Butterworth low-pass characteristic.
BE4: 4-pole Bessel low-pass characteristic.

CUTOFF FREQUENCY SETTINGS

Standard 2-Range Models

<table>
<thead>
<tr>
<th>Range</th>
<th>Cutoff Frequency Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5 Hz to 1.275 kHz in 5 Hz steps (Low) 1.5 kHz to 127.5 kHz in 500 Hz steps (High)</td>
</tr>
<tr>
<td>C</td>
<td>1 Hz to 255 Hz in 1 Hz steps (Low) 300 Hz to 25.5 kHz in 100 Hz steps (High)</td>
</tr>
<tr>
<td>E</td>
<td>1 Hz to 255 Hz in 1 Hz steps (Low) 260 Hz to 2.55 kHz in 10 Hz steps (High)</td>
</tr>
</tbody>
</table>

Standard F8??? Single 255:1 Ranges (no setup required)

<table>
<thead>
<tr>
<th>Range</th>
<th>Cutoff Frequency Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>F8001</td>
<td>1 Hz to 255 Hz in 1 Hz steps</td>
</tr>
<tr>
<td>F8100</td>
<td>10 Hz to 2.55 kHz in 10 Hz steps</td>
</tr>
<tr>
<td>F8500</td>
<td>500 Hz to 127.5 kHz in 500 Hz steps</td>
</tr>
</tbody>
</table>

Fixed Frequency Models

<table>
<thead>
<tr>
<th>Range</th>
<th>Cutoff Frequency Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>F8010</td>
<td>10 Hz to 2.55 kHz in 10 Hz steps</td>
</tr>
<tr>
<td>F8100</td>
<td>100 Hz to 25.5 kHz in 100 Hz steps</td>
</tr>
<tr>
<td>F8500</td>
<td>500 Hz to 127.5 kHz in 500 Hz steps</td>
</tr>
</tbody>
</table>

???: ???: denotes a fixed cutoff frequency in the range between 1 Hz and 127.5 kHz.
27604 FILTER SPECIFICATIONS

Cutoff Amplitude:
-0.044 dB for LP8, HP8
-0.1 dB for EL8, EH8
-3.01 dB for TD8B, BU8, BE8, LP1, HP1, TD6B, BU6, BE6, EL4, EH4, TD4, BU4, BE4
-10.06 dB for TD8A
-9.61 dB for TD6A

BU4, BE4, EL4, EH4, TD4, BU6, BE6, TD6, BU8, BE8, TD8, TD8D:

Ampl. Accuracy (DC to F–3.01 dB; F–3.01 dB to 127.5 kHz for EH4):
±0.1 dB

Amplitude Match (DC to F–3.01 dB; F–3.01 dB to 127.5 kHz for EH4):

| Fc ≤ 20 kHz | 0.05 dB max, 0.005 dB typ |
| Fc < Fc ≤ 127.5 kHz | 0.1 dB max, 0.01 dB typ |

Phase Match (DC to F–3.01 dB; F–3.01 dB to 127.5 kHz for EH4):

| Fc ≤ 20 kHz | 0.5° max, 0.05° typ |
| Fc < Fc ≤ 127.5 kHz | 1° max, 0.1° typ |

LP1, HP1, EL8, EH8:

Ampl. Accuracy (DC to 0.8 Fc; 1.2 Fc to 127.5 kHz for HP1, EH8):
filter char. ±0.15 dB

Amplitude Match (DC to 0.8 Fc; 1.2 Fc to 127.5 kHz for HP1, EH8):
0.1 dB max, 0.01 dB typ

Phase Match (DC to 0.8 Fc; 1.2 Fc to 127.5 kHz for HP1, EH8):
1 deg max, 0.1 deg typ

–3.01 dB Frequency Amplitude Accuracy:
±0.25 dB

FILTER SPECIFICATIONS (Continued)

Filter Bypass (Std): Bypasses the filter but not the amplifier stages. Specifications when the filter is bypassed:

-3.01 dB Bandwidth: 250 kHz, typ
High Freq. Rolloff: 18 dB/octave
Freq. Response: ±0.05 dB, DC to 127.5 kHz

Other Specifications

Stop-Band Amplitude Response Conformance:
f = frequency in the stop-band or where there is greater than 80 dB attenuation for monotonic filters. for f ≤ 100 kHz, minimum stop-band attenuation ±3 dB for 100 kHz < f < 1 MHz, ±5 dB

High-pass Filter Small Signal Bandwidth: 250 kHz

4-Pole Filter Selection Guide

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>EL4</th>
<th>EH4</th>
<th>TD4</th>
<th>BU4</th>
<th>BE4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>LP</td>
<td>HP</td>
<td>LP</td>
<td>LP</td>
<td>LP</td>
</tr>
<tr>
<td>Number of Poles, Zeroses</td>
<td>4p, 4z</td>
<td>4p, 4z</td>
<td>4p, 4z</td>
<td>4p</td>
<td>4p</td>
</tr>
<tr>
<td>Pass-band Ripple (dB-p-p)</td>
<td>0.1</td>
<td>0.1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>–0.1 dB Frequency</td>
<td>0.827 Fc</td>
<td>1.209 Fc</td>
<td>0.189 Fc</td>
<td>0.625 Fc</td>
<td>0.189 Fc</td>
</tr>
<tr>
<td>–3.01 dB Frequency</td>
<td>Fc</td>
<td>Fc</td>
<td>Fc</td>
<td>Fc</td>
<td>Fc</td>
</tr>
<tr>
<td>–20 dB Frequency</td>
<td>1.492 Fc</td>
<td>0.670 Fc</td>
<td>2.524 Fc</td>
<td>1.776 Fc</td>
<td>2.542 Fc</td>
</tr>
<tr>
<td>–40 dB Frequency</td>
<td>2.398 Fc</td>
<td>0.417 Fc</td>
<td>4.483 Fc</td>
<td>3.162 Fc</td>
<td>4.724 Fc</td>
</tr>
<tr>
<td>–60 dB Frequency</td>
<td>3.666 Fc</td>
<td>0.273 Fc</td>
<td>7.049 Fc</td>
<td>5.623 Fc</td>
<td>8.482 Fc</td>
</tr>
<tr>
<td>–80 dB Frequency</td>
<td>4.719 Fc</td>
<td>0.212 Fc</td>
<td>9.144 Fc</td>
<td>10.00 Fc</td>
<td>15.13 Fc</td>
</tr>
<tr>
<td>Stop-band Frequency</td>
<td>4.719 Fc</td>
<td>0.212 Fc</td>
<td>9.144 Fc</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Stop-band Attenuation (dB)</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Phase at Fc (°)</td>
<td>–220.35</td>
<td>220.35</td>
<td>–107.16</td>
<td>–180.00</td>
<td>–120.82</td>
</tr>
<tr>
<td>Phase Distortion at Fc (°)</td>
<td>53.26</td>
<td>n/a</td>
<td>0.25</td>
<td>30.49</td>
<td>0.28</td>
</tr>
<tr>
<td>Overshoot (%)</td>
<td>13.8</td>
<td>n/a</td>
<td>0.80</td>
<td>11.4</td>
<td>1.03</td>
</tr>
<tr>
<td>1% Settling Time (sec)</td>
<td>2.73/Fc</td>
<td>2.59/Fc</td>
<td>0.63/Fc</td>
<td>1.66/Fc</td>
<td>0.64/Fc</td>
</tr>
<tr>
<td>0.1% Settling Time (sec)</td>
<td>4.36/Fc</td>
<td>4.07/Fc</td>
<td>1.15/Fc</td>
<td>2.73/Fc</td>
<td>1.00/Fc</td>
</tr>
</tbody>
</table>
GENERAL CHARACTERISTICS

27604 Card Size: 5.68 x 13.15 x 0.75 inches
Card Weight: 1.87 lbs net, 3.3 lbs shipping
Temperature: 0°C to 40°C (operating)
-20°C to 70°C (storage)

ORDERING INFORMATION

27604-???-XXX-??
Filter Type: EH8, EL8, TD8, TD8D, BU8, BE8, LP1, HP1, TD6, BU6, BE6, EL4, EH4, TD4, BU4, BE4
Freq. Indicator: A, C, ...etc. See Page 4.