The **PF-1U-FA Multi-Channel Programmable Filter/Amplifier System** is ideal for conditioning low-level voltage inputs in front of high-resolution digital data acquisition systems. Fully programmable 8-channel and 16-channel configurations are available in standard or high-performance models. A choice of 4 and 8-pole filter characteristics is available in low-pass and band-pass configurations. Fully programmable gain is distributed around the filter to reduce the possibility of clipping on out-of-band signals.

Applications
- Low-pass, band-pass, high-pass filter/amplifier
- IEPE sensor conditioner
- Anti-aliasing filters
- Transient (shock) measurements
- Reconstruction filters

PF-1U-FA Description

The PF-1U-FA series is a multi-channel programmable filter/amplifier system in a compact rack mountable or bench top package. Fully programmable 8-channel and 16-channel configurations are available in high performance or standard configurations with a selection of input connector configurations. For units with BNC input connectors, an optional programmable current source is provided on each channel to interface the PF-1U to IEPE transducers. For applications requiring balanced twisted/shielded cable inputs, a LEMO input connector option is available. Fully input programmable configuration (single-ended or differential) is supported for systems configured with LEMO input connectors.

The standard PF-1U-FA configuration offers 4-pole low-pass filters with five programmable cutoffs and gain programmable to x1,024. The high performance PF-1U-FA offers a choice of 4 or 8-pole low-pass and band-pass filters with cutoffs programmable from 1 Hz to 204.6 kHz. The high performance PF-1U-FA has an upgraded wideband (500 kHz) low-noise amplifier with transducer DC suppress capability. Gain is programmable to x8,192.

The low-pass filters may operate in either a “flat” mode for maximally flat pass-band amplitude response with sharp rolloff or a “pulse” mode for low phase distortion and optimized transient response. The “flat” mode provides passband characteristics nearly identical to a Butterworth filter while providing a much sharper rolloff. This mode is a good choice for applications such as spectral analysis. The “pulse” mode has time domain response similar to the Bessel filter yet provides superior amplitude response characteristics. The “pulse” mode is ideal for time domain applications including transient (shock) measurements and waveform analysis.

Gain is distributed both before and after the filter to provide protection from large out-of-band energy or transients that could cause clipping before the filter, distorting the data. The post-filter gain has resolution of better than 0.05% to enable system scaling of the outputs to match the full-scale input of the external recording device. Overload detectors alert the user to over-voltage conditions. Other features of the PF-1U-FA include a test input for injection of calibration signals into the channel input and a monitor output that allows for convenient monitoring of any channel output via a single BNC. The system includes an Ethernet remote interface and is supplied with a Windows based Graphical User Interface (GUI) for local control.

Salient Features

- **Number of Channels:**
 - 16 (PF-1U-16FA)
 - 8 (PF-1U-8FA)

- **Input Connectors:**
 - Standard: Individual isolated BNC’s at front panel
 - Option I: Individual BNC input with programmable (IN/OUT) 6 mA current source with 26 V compliance for powering IEPE transducers.
 - Option 3: Individual isolated LEMO front panel input connectors. Programmable single-ended or balanced differential input.

- **Output Connectors:**
 - Individual isolated BNC’s at rear panel

- **Inputs:**
 - Balanced differential input with programmable AC/DC coupling

- **Zero Suppress (High Performance PF-1U-FA):**
 - Programmable DC voltage is inserted at channel input

- **Pre-Filter Gain:**
 - High Performance PF-1U: x1 to x512 in x2 steps
 - Standard PF-1U: x1 to x64 in x2 steps

- **Post-Filter Gain:**
 - High Performance PF-1U: x0.25 to x16 with 0.05% resolution
 - Standard PF-1U: x0.5 to x16 with 0.05% resolution

- **High Performance PF-1U-FA Filters:**
 - Choice of 4 or 8-pole low-pass flat/pulse filters or 8-pole band-pass filters
 - Over 2000 programmable cutoffs from 1 Hz to 200 kHz and filter bypass (500 kHz)

- **Standard PF-1U-FA Filters:**
 - 4-pole flat/pulse low-pass filters with five programmable cutoffs between 100 Hz to 30 kHz and filter bypass (190 kHz)

- **Outputs:**
 - DC coupled, single-ended

- **Test Support:**
 - Test input and monitor output busses

- **Input Power:**
 - 12 to 24 VDC external AC to DC power supply provided with unit

- **Control:**
 - Ethernet remote control
 - Local control via supplied Window based Graphical User Interface (GUI)
 - Store up to four setups in non-volatile RAM allowing pre-configured applications
Operating the PF-1U-FA

System Control
For local control, the PF-1U-FA system is controlled via an Ethernet interface using the supplied spreadsheet-style GUI application running on a Windows PC. The GUI supports control of all channel and system features and allows for group control of channels. Up to eight PF-1U-FA systems can be controlled by one GUI. System settings are restored on power-up or after a power fault. The settings are retained when the computer is disconnected even after a power-down and up, allowing the unit to be pre-configured for an application in which a computer may not be available for control.

The PF-1U-FA system may be controlled remotely via an interactive command line interpreter that allows the PF-1U-FA to function as a server on the network.

Controls, Indicators and Connectors

Front Panel
Analog Input Connectors:
PF-1U-8FA – Eight coaxial BNC Input connectors provide input connection to channels 0 through 7.
PF-1U-16FA – Sixteen coaxial BNC Input connectors provide input connection to channels 0 through 15.
Input Overload Indicators:
Overload LEDs, one above each channel input connector, indicate an input overload condition.
Test Input Connector:
The coaxial BNC Test Input Connector provides a means to connect an external test signal from a programmable function generator to the channel inputs without disconnecting input signal cables.

Warning Indicator:
The Warning LED indicates a system fault such as over temperature or a power voltage out of factory specifications.
Power Switch and Indicator:
The On/Off Power Switch is located on the front panel and includes a Power On LED indicating when the system is powered up.
Ethernet Connector:
The RJ45 Ethernet connector provides the control link for a host computer and includes a Status LED indicating the host is communicating with the system.

Rear Panel
Analog Output Connectors:
PF-1U-8FA – Eight coaxial BNC Output connectors provide output connection to channels 0 through 7.
PF-1U-16FA – Sixteen coaxial BNC Output connectors provide output connection to channels 0 through 15.
Power In Connector:
The Power In Connector provides a connection for an external DC power supply.
Chassis Ground and Signal Ground Posts:
The Chassis Ground post and the Signal Ground post provide a means for coupling the chassis ground to the signal ground.
Monitor Output Connector:
The coaxial BNC Monitor Output connector provides a means for viewing the output of a selected channel using a scope or other measurement device without disconnecting output signal cables.
Input Characteristics

Type: Balanced Differential w/ programmable AC/DC input coupling

Input Connector:
- **Standard:** Individual isolated BNC’s at the front panel.
- **Option 3:** Individual isolated 3-pin (Signal High, Signal Low and Shield) LEMO connector at front panel with programmable single-ended (grounded Signal Low) or balanced differential input configuration. *Note: IEPE (Option I) is not supported with the LEMO option.*

Input Impedance:
10 MΩ //100 pF per side

Max Level:
- (AC + DC + Common Mode)
 - ±10 Vpk for f < or = 200 kHz
 - ±10 Vpk x (200 kHz/f) for f >200 kHz

Input Protection:
25 V continuous (power on)
60 Vpk transient (1 ms pulse, 50% duty cycle)

Offset Drift:
- High Performance PF-1U-FA: 1 µV/°C, RTI
- Standard PF-1U-FA: 10 µV/°C, RTI

Noise:
- High Performance PF-1U-FA: 7 nV per rt. Hz at 1 kHz and pre-filter gain > 64, typical
- Standard PF-1U-FA: 14 nV per rt. Hz at 1 kHz and pre-filter gain > 64, typical

AC Coupling Frequency:
0.25 Hz (~3.01 dB)

CMRR (DC Coupled):
86 dB, DC to 440 Hz and input gain > x16

CMRR (AC Coupled):
80 dB, 10 Hz to 440 Hz and input gain > x16

Input Short:
Amplifier inputs may be programmed to ground to measure amplifier noise and DC offset.

Test Input:
A switch at the channel input allows for injection of external test signal via an external front panel BNC connector.

Option I – IEPE Current Source:
Programmable (IN/OUT) Current Source for IEPE Transducers. When selected, the IEPE option provides an AC coupled, single-ended input with a 6 mA current source. When the IEPE current source is not selected, the PF-1U provides standard filter/amplifier functionality. *Note: Option I may not be ordered with Option 3.*

Current:
6 mA ±10%

Current Source Compliance Voltage:
26 V, ±5%

AC Coupling Frequency w/ IEPE Selected:
0.32 Hz ±5%

IEPE Bias Monitor:
When selected, the IEPE transducer DC bias voltage is connected to the amplifier input via a 10x attenuator, allowing this voltage to be monitored at the channel output or at the system output monitor bus BNC connector.

Zero Suppress (High Performance PF-1U-FA Only):
Precision programmable DC offset is injected at the channel input stage to suppress the DC operating voltage. Manual or automatic suppression modes are supported (Standard).

Input Short:
Amplifier inputs may be programmed to ground to measure amplifier noise and DC offset.

Test Input:
A switch at the channel input allows for injection of external test signal via an external front panel BNC connector.

Option I – IEPE Current Source:
Programmable (IN/OUT) Current Source for IEPE Transducers. When selected, the IEPE option provides an AC coupled, single-ended input with a 6 mA current source. When the IEPE current source is not selected, the PF-1U provides standard filter/amplifier functionality. *Note: Option I may not be ordered with Option 3.*

Current:
6 mA ±10%

Current Source Compliance Voltage:
26 V, ±5%

AC Coupling Frequency w/ IEPE Selected:
0.32 Hz ±5%

IEPE Bias Monitor:
When selected, the IEPE transducer DC bias voltage is connected to the amplifier input via a 10x attenuator, allowing this voltage to be monitored at the channel output or at the system output monitor bus BNC connector.

Zero Suppress (High Performance PF-1U-FA Only):
Precision programmable DC offset is injected at the channel input stage to suppress the DC operating voltage. Manual or automatic suppression modes are supported (Standard).

0.64 V Suppress Ranges:
- ±0.01 mV to ±10 mV in ±4.88 µV steps
- ±10.04 mV to ±80 mV in ±39 µV steps
- ±80.30 mV to ±0.64 V in ±312 µV steps

10.24 V Suppress Ranges
(Gain limited to x 256):
- ±0.08 mV to ±160 mV in ±78 µV steps
- ±160.6 mV to ±1.28 V in ±625 µV steps
- ±1.285 V to ±10.24 V in ±5 mV steps

Accuracy:
±0.25% of setting ±5 mV

Amplifier Specifications (High Performance PF-1U-FA)

Pre-Filter Gain:
x1 to x512 in x2 steps with overload detection (10.2 Vpk threshold)

Post-Filter Gain:
x0.25 to x16 with 0.05% resolution

DC Accuracy:
±0.1% at any gain setting. Includes filter.

Temperature Coefficient:
±0.004% /°C

DC Linearity:
±0.005% re: Fullscale, relative to best straight line

Frequency Response:
DC to 200 kHz; 0 dB ±0.1 dB;
–3 dB typical at 500 kHz

Amplifier Specifications (Standard PF-1U-FA)

Pre-Filter Gain:
x1 to x64 in x2 steps with overload detection (10.2 Vpk threshold)

Post-Filter Gain:
x0.5 to x16 with 0.05% resolution

DC Accuracy:
0.2%

Temperature Coefficient:
±0.008% /°C

DC Linearity:
±0.01% re: Fullscale, relative to best straight line

Frequency Response:
DC to 100 kHz; 0 dB ±0.1 dB;
–3 dB typical at 190 kHz
PF-1U-FA Filter Characteristics

You want your analog data to come clean before digital conversion.

The PF-1U-FA System has a variety of high performance filter characteristics available for LP or BP Precision filtering.

Flat/Pulse Low-Pass Filters

Our new choice of LP4FP 4-pole or LP8FP 8-pole flat/pulse low-pass filters provide the user with the versatility to address applications in either the time or frequency domain and are available on both the 8 and 16-channel systems.

Flat Mode Low-Pass Filters

Precision LP4F and LP8F “flat” mode characteristics are specified to have outstanding passband flatness equivalent to the Butterworth yet deliver very sharp roll-off characteristics.

The LP4F and LP8F are a good choice as an anti-aliasing filter and for applications such as spectral analysis. The LP8F has zero passband ripple and over 100 dB/octave attenuation slope.

Pulse Mode Low-Pass Filters

For the time domain, there are the LP4P and LP8P “pulse” mode low-pass filters. These filters have excellent transient response and phase linearity making them ideal filters for time domain applications including transient (shock) measurements and time domain waveform analysis … all with roll-off characteristics superior to their Bessel filter counterparts.

Band-Pass Filters

For band-pass filtering, choose the HP4F/LP4FP band-pass characteristic to provide programmable bandwidth and center frequency filters.

![LP4F and LP8F vs Butterworth Amplitude Response](image1)

![LP8P and LP4P Pass-Band Response](image2)

![LP8P and LP4P Step Response](image3)

![Band-Pass Amplitude Response HP4F and LP4F Cascaded](image4)

![LP8P vs 8-Pole Bessel Amplitude Response](image5)
PF-1U-FA Filter Characteristics

PF-1U-FA Filter Type Characteristics

Option LP4FP:
4-pole, 4-zero low-pass filter.
Programmable for maximally flat
pass-band (LP4F) or linear phase with
optimized pulse response (LP4P).

Option LP8FP
(High Performance PF-1U-FA Only):
8-pole, 8-zero low-pass filter.
Programmable for maximally flat
pass-band (LP8F) or linear phase with
optimized pulse response (LP8P).

Option HP4F/LP4FP
(High Performance PF-1U-FA Only):
8-pole, 8-zero band-pass filter.
Flat HP4F 4-pole, 4-zero high-pass filter
cascaded with a 4-pole, 4-zero low-pass
filter. Low-pass filter programmable for
maximally flat pass-band (LP4F) or linear
phase with optimized pulse response
(LP4P).

Cutoff Frequencies
(High Performance PF-1U-FA):
Flat Mode: LP4F, LP8F, HP4F
2 Hz to 2.046 kHz in 2 Hz steps
2.2 kHz to 204.6 kHz in 200 Hz steps
Pulse Mode: LP4P, LP8P
1 Hz to 1.023 kHz in 1 Hz steps
1.1 kHz to 102.3 kHz in 100 Hz steps

Cutoff Frequencies (Standard PF-1U-FA):
LP4F, LP4P
FX02: 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz

LP4F, LP4P, LP8F, LP8P:
Amplitude Accuracy:
±0.1 dB max, DC to 0.8 Fc
±0.2 dB max, 0.8 Fc to Fc
Amplitude Match:
±0.1 dB max, DC to 0.8 Fc
±0.2 dB max, 0.8 Fc to Fc
Phase Match:
±1° max, DC to 0.8 Fc
±2° max, 0.8 Fc to Fc

HP4F
(High Performance PF-1U-FA Only):
Amplitude Accuracy:
±0.1 dB max, 1.2 Fc to 204.6 kHz
±0.2 dB max, Fc to 1.2 Fc
Amplitude Match:
±0.1 dB max, 1.2 Fc to 204.6 kHz
±0.2 dB max, Fc to 1.2 Fc
Phase Match:
±1° max, 1.2 Fc to 204.6 kHz
±2° max, Fc to 1.2 Fc
Bypass:
Bypasses filter but not amplifier stages.
Each filter may be independently
bypassed for the HP4F/LP4FP
band-pass filter.
Bypass Bandwidth:
High Performance PF-1U-FA:
500 kHz, typical
Standard PF1U-FA:
190 kHz, typical

<table>
<thead>
<tr>
<th>Specification</th>
<th>LP4F Maximally Flat Low-Pass Filter</th>
<th>LP4P Constant Time Delay Low-Pass Filter</th>
<th>LP8F Maximally Flat Low-Pass Filter</th>
<th>LP8P Constant Time Delay Low-Pass Filter</th>
<th>HP4F Maximally Flat High-Pass Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutoff Frequency Amplitude</td>
<td>−3.01 dB</td>
<td>−3.01 dB</td>
<td>−3.01 dB</td>
<td>−3.01 dB</td>
<td>−3.01 dB</td>
</tr>
<tr>
<td>DC Gain</td>
<td>0.00 dB</td>
<td>0.00 dB</td>
<td>0.00 dB</td>
<td>0.00 dB</td>
<td>−80 dB</td>
</tr>
<tr>
<td>Pass-Band Ripple</td>
<td>0.00 dB</td>
<td>0.00 dB</td>
<td>0.00 dB</td>
<td>0.00 dB</td>
<td>0.00 dB</td>
</tr>
<tr>
<td>Stop-Band Frequency</td>
<td>5.9465 Fc</td>
<td>11.863 Fc</td>
<td>1.7479 Fc</td>
<td>3.4688 Fc</td>
<td>0.1682 Fc</td>
</tr>
<tr>
<td>Cutoff Frequency Phase</td>
<td>−180.0 deg</td>
<td>−101.5 deg</td>
<td>−360 deg</td>
<td>−161.9 deg</td>
<td>180 deg</td>
</tr>
<tr>
<td>Phase Distortion (DC to Fc)</td>
<td><31.8 deg</td>
<td><3.7 deg</td>
<td><102 deg</td>
<td><0.05 deg</td>
<td>-</td>
</tr>
<tr>
<td>Zero Frequency Group Delay</td>
<td>0.4117/Fc</td>
<td>0.2920/Fc</td>
<td>0.7197/Fc</td>
<td>0.4496/Fc</td>
<td>-</td>
</tr>
<tr>
<td>Percent Overshoot</td>
<td>11.1%</td>
<td>0.5%</td>
<td>18.9%</td>
<td>1.1%</td>
<td>-</td>
</tr>
<tr>
<td>1% Settling Time</td>
<td>1.65/Fc</td>
<td>0.66/Fc</td>
<td>4.03/Fc</td>
<td>1.25/Fc</td>
<td>1.86/Fc</td>
</tr>
<tr>
<td>0.1% Settling Time</td>
<td>2.72/Fc</td>
<td>0.77/Fc</td>
<td>7.02/Fc</td>
<td>2.25/Fc</td>
<td>2.92/Fc</td>
</tr>
<tr>
<td>−0.1 dB Frequency</td>
<td>0.6348 Fc</td>
<td>0.1816 Fc</td>
<td>0.8538 Fc</td>
<td>0.1800 Fc</td>
<td>1.5753 Fc</td>
</tr>
<tr>
<td>−1 dB Frequency</td>
<td>0.8487 Fc</td>
<td>0.5742 Fc</td>
<td>0.9437 Fc</td>
<td>0.5685 Fc</td>
<td>1.1783 Fc</td>
</tr>
<tr>
<td>−2 dB Frequency</td>
<td>0.9370 Fc</td>
<td>0.8129 Fc</td>
<td>0.9772 Fc</td>
<td>0.8087 Fc</td>
<td>1.0672 Fc</td>
</tr>
<tr>
<td>−3.01 dB Frequency</td>
<td>1.0000 Fc</td>
<td>1.0000 Fc</td>
<td>1.0000 Fc</td>
<td>1.0000 Fc</td>
<td>1.0000 Fc</td>
</tr>
<tr>
<td>−20 dB Frequency</td>
<td>1.7412 Fc</td>
<td>3.0248 Fc</td>
<td>1.2149 Fc</td>
<td>2.2342 Fc</td>
<td>0.5743 Fc</td>
</tr>
<tr>
<td>−40 dB Frequency</td>
<td>2.9555 Fc</td>
<td>5.6932 Fc</td>
<td>1.4443 Fc</td>
<td>2.7556 Fc</td>
<td>0.3384 Fc</td>
</tr>
<tr>
<td>−60 dB Frequency</td>
<td>4.5986 Fc</td>
<td>9.0980 Fc</td>
<td>1.6391 Fc</td>
<td>3.2016 Fc</td>
<td>0.2175 Fc</td>
</tr>
<tr>
<td>−80 dB Frequency</td>
<td>5.9465 Fc</td>
<td>11.8629 Fc</td>
<td>1.7479 Fc</td>
<td>3.4688 Fc</td>
<td>0.1682 Fc</td>
</tr>
</tbody>
</table>
PF-1U-FA Details and Specifications

Output Characteristics

Type:
DC coupled, single ended output

Output Connector:
Individual BNC’s at rear panel

Impedance:
10 Ω // 100 pF

Max Output:
±10 Vpk, ±10 mA pk

Offset:
<5 mV after auto-adjust at any gain setting

Offset Drift:
High Performance PF-1U-FA:
1 µV/°C, RTI + 150 µV/°C RTO
Standard PF-1U-FA:
10 µV/°C, RTI + 150 µV/°C RTO

Crosstalk:
–90 dB, DC to 100 kHz

Noise:
High Performance PF-1U-FA:
2.8 µV rms RTI + 60 µV rms RTO
3 Hz to 100 kHz
Standard PF-1U-FA:
7 µV rms RTI + 100 µV rms RTO
3 Hz to 100 kHz

Output Monitor:
A switch at the output of each channel allows for multiplexed connection to the chassis output monitor bus BNC connector for viewing the channel output with an external device.

Power Requirements

Power is supplied to the PF-1U-FA from either the external PF-1U-ACDC2-120W, included with each system, or a direct power source. The input power supply requirements are 12 VDC to 24 VDC, 75 W typical, and is applied at the rear panel POWER IN connector. Power supply mating connectors and pigtail mating connectors are available for custom applications. See Accessories on the last page for description and part numbers.

PF-1U-ACDC2 External Power Supply

The compact PF-1U-ACDC2-120W AC to DC external power supply features a thermostatically controlled cooling fan and carries the CE/UL listing marks. One PF-1U-ACDC2-120W is supplied with each PF-1U-FA system.

Input Voltage, Frequency
100-240 VAC, 47 to 63 Hz

Current
3.2 amp, 100-120 VAC,
2.0 amp, 220-240 VAC

PF-1U Standard vs. High Performance Comparison Table

<table>
<thead>
<tr>
<th></th>
<th>PF-1U Standard Performance</th>
<th>PF-1U High Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>Overall Amplifier Gain: x0.5 to x1024X with 0.05% resolution</td>
<td>Overall Amplifier Gain: x0.25 to x8192 with 0.05% resolution</td>
</tr>
<tr>
<td></td>
<td>Pre-Filter Gain: x1 to x64 in x2 steps</td>
<td>Pre-Filter Gain: x1 to x512 in x2 steps</td>
</tr>
<tr>
<td></td>
<td>Post-Filter Gain: x0.5 to x16 with 0.05% resolution</td>
<td>Post-Filter Gain: x0.25 to x16 with 0.05% resolution</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>DC to 100 kHz 0 dB ±0.1 dB; –3 dB at 190 kHz</td>
<td>DC to 200 kHz 0 dB ±0.1 dB; –3 dB at 500 kHz</td>
</tr>
<tr>
<td>Noise</td>
<td>14 nV/√Hz at 1 kHz and pre-filter gain >64X typical</td>
<td>7 nV/√Hz at 1 kHz and pre-filter gain >64X typical</td>
</tr>
<tr>
<td>Zero Suppress</td>
<td>Not included in standard model</td>
<td>0.64 V and 10 V Range</td>
</tr>
<tr>
<td>Filter Type</td>
<td>LP4FP: 4-pole low-pass filter with programmable maximally flat pass band (Flat Mode) or linear phase (Pulse Mode) responses.</td>
<td>LP4FP (4-pole) and LP8FP (8-pole) low-pass filter with programmable maximally flat-pass band (Flat Mode) or linear phase (Pulse Mode) responses</td>
</tr>
<tr>
<td></td>
<td>HP4F/LP4FP: 8-pole band pass filter. HP4F Flat Mode 4-pole high-pass filter cascaded with LP4FP 4-pole low-pass filter having programmable maximally flat-pass band (Flat Mode) or linear phase (Pulse Mode) responses.</td>
<td></td>
</tr>
<tr>
<td>Filter Cutoff Frequencies</td>
<td>FX02: 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, Bypass</td>
<td>Flat Mode:</td>
</tr>
<tr>
<td></td>
<td>2 Hz to 2.046 kHz in 2 Hz steps</td>
<td>2 Hz to 2.046 kHz in 2 Hz steps</td>
</tr>
<tr>
<td></td>
<td>2.2 kHz to 204.6 kHz in 200 Hz steps and Bypass</td>
<td>2.2 kHz to 204.6 kHz in 200 Hz steps and Bypass</td>
</tr>
<tr>
<td></td>
<td>Pulse Mode:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Hz to 1.023 kHz in 1 Hz steps</td>
<td>1 Hz to 1.023 kHz in 1 Hz steps</td>
</tr>
<tr>
<td></td>
<td>1.1 kHz to 102.3 kHz in 100 Hz steps and Bypass</td>
<td>1.1 kHz to 102.3 kHz in 100 Hz steps and Bypass</td>
</tr>
</tbody>
</table>
PF-1U-FA General Characteristics

PF-1U-8FA 8-Channel Filter/Amplifier
- **Size:** 19” x 19” x 1U (1.75”) WDH
- **Weight:** 10 lb. 2 oz. (with rack mount)

PF-1U-16FA 16-Channel Filter/Amplifier
- **Size:** 19” x 19” x 1U (1.75”) WDH
- **Weight:** 11 lb. 6 oz. (with rack mount)

Operating Temp: 0 to 40°C
Storage Temp: –25 to 85°C

Power Supply
- **Input:** 12 VDC provided by supplied external 120 W AC/DC power supply or 12 to 24 VDC from user supplied DC voltage source
- **Power Consumption:** 75 W, typical

PF-1U-FA External Supply
- **Model Number:** PF-1U-ACDC2-120 W CE/UL Mark
- **Weight:** 2 lb. 8 oz.
- **Input Power:** 110 to 240 VAC, 47-63 Hz

PF-1U-FA Details and Specifications

Accessories

- **IN-LEMO3xx:**
 - PF pn A10861 consisting of LEMO pn FGG.1B.303.CYB.D?? (where ?? indicates ferrule size). A set of ferrules for cable O.D. 0.06 to 0.22 inches is provided.
 - Crimp pins accommodate 20, 22 or 24 gage wire (AWG).

- **1U-RM 19-inch Rack Mount Kit:**
 - Rack Mount Kit provides standard 1U height RETMA rack installation (included with system)

- **PF-1U Rubber Feet Kit:**
 - The PF-1U Rubber Feet Kit provides non-skid feet for desk or table top installation (included with system)

- **PF-1U-ACDC2-120W:**
 - AC to DC external 120 W power supply 110 to 240 VAC, 47-63 Hz with mating connector; CE/UL approved (included with system)

- **Power Supply Mating Connector:**
 - Three-pin Combo-D mating connector (Precision Filters pn A11328G1)

PF-1U-FA General Characteristics

PF-1U-FA System Model Numbers

High Performance Model

- **PF-1UC-??FA-<LP4FP|LP8FP|HP4F/LP4>-<I*|3*>-<Z3>*:**
 - **Filter Specification:**
 - 4-pole low-pass (LP4FP)
 - 8-pole low-pass (LP8FP)
 - 8-pole band-pass (HP4F/LP4FP)
 - **Option 3* = LEMO inputs w/Prog. SE/Diff IN
 - Option I* = BNC inputs w/IEPE Current Source

- **8FA 8-Channel Filter/Amplifier**
- **16FA 16-Channel Filter/Amplifier**

Standard Model

- **PF-1UC-??FA-<RANGE>-LP4FP-<I*|3*>:**
 - **Option 3* = LEMO inputs w/Prog. SE/Diff IN
 - Option I* = BNC inputs w/IEPE Current Source
 - **FX02 (Filter Cutoff Frequencies)**

- **8FA 8-Channel Filter/Amplifier**
- **16FA 16-Channel Filter/Amplifier**

Select only one.

464kB High-Density Programmable Switch Matrix

Computer-controlled analog signal switching replaces tedious manual patch panels.

The 464kB is a reliable solid-state switch matrix system that provides computer-controlled connection between 256 inputs and 256 outputs, all in a single mainframe. Save time and reduce errors on test system setup. Download switch configurations from the host computer over the network. Built-in self-test with fault diagnostics.